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Abstract. To overcome the difficulties of high-dimensional data, Elastic Net Principal Component Regression 

(ENPCR), a potent statistical technique, combines Elastic Net regularization with Principal Component 

regression (PCR). When dealing with Multicollinearity among predictors, this method is especially helpful 

because it enables efficient variable selection while preserving interpretability. PCA is initially used in ENPCR 

to reduce the dataset's dimensionality by converting correlated variables into a group of uncorrelated principal 

components. The Elastic Net regression model then uses these elements as inputs and penalizes the regression 

coefficients using both L1 and L2 penalties. By promoting sparsity, this dual regularization lessens overfitting 

and helps the model concentrate on its most important components. simulated studies and Real datasets are used 

to demonstrate the our proposed method . 
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1. INTRODUCTION 

 Datasets classified as high-dimensional have a high number of variables relative to 

observations(Fan, J., & Lv, J. (2008)). High-dimensional data becomes complex in terms of 

analysis and interpretation.to overcame this problem maybe through using one regularization 

method(Bühlmann, P., & van de Geer, S. (2011)). It is known that as the dimensions of the 

data in regression analysis increase, the statistical problems arise, providing us with inefficient 

estimators. One of the most important of these problems is the issue of 

Multicollinearity((Montgomery, D et al ,2012)). In regression analysis, a situation known as 

Multicollinearity occurs when there is a significant correlation between two or more 

independent variables, producing redundant results. Changes in one predictor variable are 

linked to changes in another when Multicollinearity is present. The variances of the coefficient 

estimations may be inflated by this high correlation, producing results that are unstable and 

unreliable (O'Brien, R. G. (2007)) . Regression analysis Multicollinearity can result in 

inaccurate coefficient estimates and difficult-to-understand model interpretation. To lessen the 

problems related to Multicollinearity, Elastic Net Principal Component Regression (ENPCR) 

is a useful strategy that combines the advantages of Elastic Net regularization and Principal 

Component regression (PCR) (Hastie, T et al2009). Our proposed method(ENPCR) is 

considered a distinctive approach for addressing all types of perfect and semi-perfect  

Multicollinearity. This is achieved through the advantages offered by our method, which 

combines two effective techniques for handling Multicollinearity. Additionally, it reduces high 
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dimensions to a manageable number that is interpretable. The remainder of the paper is 

organized as follows: Principal Component Regression is presented in Section 2. In section 

3,we introduced our proposed method Elastic Net principal component regression (ENPCR). 

In section 4, we tested the performance proposed method via simulation scenarios and medical 

real data. In section 5, we introduced a brief conclusions and recommendations. 

 

2. LITERATURE REVIEW 

Principal Component Regression  

The main objective of regression models is to evaluate the causal relationship between 

a dependent variable and one or more predictive variables (Gelman, A., & Hill, J. (2007)). This 

model can be described by the following mathematical expression:    

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 … + 𝛽𝑝𝑥𝑝 + 𝜖𝑖        [𝑖 = 1,2 … 𝑝]                (1) 

𝑦𝑖is the response variable, 𝛽0 is intercept , 𝛽1, 𝛽2 … 𝛽𝑝 are the parameters of model 

linked with the predictive variables(𝑥1, 𝑥2, … . . 𝑥𝑝).  

𝜖𝑖 is the random error term distributed according normal distribution with mean (0) and 

variance 𝜎2. We can introduced Multiple regression model by matrix approach as following : 

𝑌 = 𝑋𝛽 + 𝜖                             (2)                  

However, many regression models face certain statistical issues, making it very difficult 

to obtain efficient and reliable estimates for those models. One of the most significant issues is 

the problem of Multicollinearity, which directly affects the inflation of the variance of the 

estimated coefficients to a considerable extent (Montgomery, D. C.et al2012). . The 

Multicollinearity problem  appears with regression models under several conditions (Hair, J. 

F., D. C.et al 1998): Multicollinearity results from a high degree of correlation between two or 

more independent variables, making it challenging to discern the unique effects of each 

variable on the dependent variable. Perfect Multicollinearity results when one predictor 

variable may be described as a linear combination of other variables((O'Brien, R. G. (2007)). 

To cut down on Multicollinearity, choose and remove one of the linked predictors. In order to 

minimize the number of predictors while preserving important information, create composite 

variables by summing or averaging associated variables((Hair, J. F., D. C.et al 1998)). All the 

methods mentioned above are basic approaches that require a considerable amount of time to 

address the issue of multicollinearity. These methods may complicate the model and have 

adverse effects on the estimates. To overcome this problem, Principal Component Regression 

(PCR) can be used. It focuses on changing the initial explanatory variables, which have some 

degree of connection, into new variables, called principle components, that are linear 
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combinations of the initial variables without changing any of the original variables(Massy, W. 

F. (1965)). Comprehensive information regarding the observations of the original explanatory 

variables will be provided by these principal  components. As indicated by the following 

equation, each main components linear combination may be formed by combining the 

explanatory variables (𝑥1, 𝑥2, … . . 𝑥𝑝). 

𝑍 = 𝑋𝐶                                (3) 

𝑍 is represented a matrix of principal components will be of dimensions(𝑛 ∗ 𝐾) . 

𝑋 is represented a matrix of independent variable will be of dimensions(𝑛 ∗ 𝑝) . 

𝐶 is represented a matrix of loadings or coefficients that specifies the contribution of 

the independent variable variables to the principal components. It will be of dimensions(𝑝 ∗ 𝑘) 

. It is orthogonal matrix of eigenvectors corresponding to the eigenvalues of the matrix( 𝑋𝑇𝑋). 

The 𝐶 matrix is Diagonal matrix, (𝐶𝐶𝑇 = 𝐶𝑇𝐶 = 𝐼)( Jolliffe, I. T. (2002)). 

From use the  feature of 𝐶 matrix then equation (2) is become as following:  

𝑍𝐶𝑇 = 𝑋𝐶𝐶𝑇                  (4)   

where 𝐶𝐶𝑇 = 𝐼𝑃, Then X= 𝑍𝐶𝑇: In essence, it demonstrates how a linear combination 

of the principal components represented the independent variable((Lee, H.et al 2015)) . The 

model represented in the equation below illustrates the causal relationship between the 

dependent variable and a set of principal components. 

𝑌 = 𝑍𝐶𝑇𝛽 + 𝜖                                (5)       

Where the 𝛽 is a vector of  parameters belong to the principal components.  

we  assumed the 𝑍𝐶𝑇 = 𝛿 , then the principal component regression take the following 

formula(Perez, L. V. (2017)): 

𝑌 = 𝛿𝛽 + 𝜖                                (6) 

The estimates of the model represented in the equation(6) can be obtained by 

minimizing the following function: 

�̂� = 𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝛿𝑖𝛽)2

𝑃

𝐼=1

                         (7) 

Take the derivative of the sum of squared residuals with respect to 𝛽 and set it to zero 

to obtain parameters estimation(Jolliffe, I. T. (2002)). 

�̂� = (𝛿𝑇𝛿)−1𝛿𝑌                                       (8) 

The equation (8) They are intended for estimating the parameters of the principal 

component regression model, which is a good tool for addressing Multicollinearity. However, 
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when using regularization methods with principal component regression, we obtain a very 

robust method. 

Elastic Net principal component regression 

Elastic Net is a regularization strategy that improves variable selection and prediction 

performance in high-dimensional datasets by combining the advantages of both Lasso (L1 

regularization) and Ridge (L2 regularization) regression methods. By adding a penalty to the 

sum of the squared coefficients, it overcomes the drawbacks of Lasso, especially its propensity 

to choose one variable from a set of highly correlated predictors. Two hyper parameters are 

introduced by the Elastic Net technique, one of which controls the L1 penalty and the other the 

L2 penalty. This allows for a flexible trade-off between coefficient shrinkage and variable 

selection. This method works particularly well when there are more predictors than 

observations or when there is a significant degree of correlation between the predictors. Elastic 

Net allows practitioners to increase prediction accuracy while obtaining more stable and 

interpretable models. When mixture the Elastic Net technique with the principal component 

regression we obtained the following : 

�̂� = 𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝛿𝑖𝛽)2

𝑃

𝐼=1

+ 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2
2               (9) 

𝜆1𝑎𝑛𝑑 𝜆2 are shrinkage parameter, where 0 ≤ 𝜆1𝑎𝑛𝑑 𝜆2 ≤ 1. And the term   

∑ (𝑦𝑖 − 𝛿𝑖𝛽)2𝑃
𝐼=1  is the check function of principal component regression, the term𝜆1‖𝛽‖1 By 

encouraging some coefficients to be exactly zero, the L1 penalty term encourages sparsity in 

the model. the term 𝜆2‖𝛽‖2
2decreasing coefficients, helps to stabilise the estimates and reduces 

problems associated with Multicollinearity. The condition that connects the gradients of the 

residuals and the penalties is obtained by computing the gradient of the objective function and 

setting it to zero. To determine the ideal coefficients β, numerical methods are frequently 

utilized due to the difficulty posed by the L1 term. Combining Elastic Net regularization with 

principal component analysis's (PCA) advantages is Elastic Net Principal Component 

Regression, or ENPCR. Multicollinearity among predictors can make traditional regression 

methods difficult to utilize, which is why this methodology is especially helpful in high-

dimensional data circumstances.in our proposed method ,we introduced a new methods used 

for treat Multicollinearity in regression model. Based on the functions (glmnet)(caret)  in R 

programm, it is possible to build a specialized program for estimating the parameters and 

selecting variables in a principal component regression model by employing one of the 

regularization functions, we can building special R program of our proposed method.  
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Simulation Approach  

Through simulation tests, the performance of our proposed method the (ENPCR)is 

examined. These investigations aim to assess the our proposed method  robustness and efficacy 

in a range of scenarios. we will compared our proposed method  with two  of existing methods 

in same filed. First methods is(principle component regression) denoted by (P.C.R) which, it 

proposed by  (Wehrens, R., & Mevik, B. H. (2007))within R package (pls) function (pcr) 

.Second method is (Bayesian lasso principal component regression with an application) 

denoted by(B.L.P.C.R) which it is proposed(AL-Sharoot, M. H., Kazem et al 2023),within 

special R package. In this simulation study, We will use four types of correlation coefficients 

between the independent variables as follows: 𝜌1 = 0.55,   𝜌2 = 0.85 , 𝜌3 = 0.95 𝑎𝑛𝑑𝜌4 =

0.99 . Also,we used four sample size (𝑛1 = 50, 𝑛2 = 100, 𝑛3 = 150 𝑎𝑛𝑑 𝑛4 = 200,)  For 

comparison, two criteria were used: median of mean absolute deviations 

(MMAD), where MMAD = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑚𝑒𝑎𝑛(|𝛿𝑇�̂� − 𝛿𝑇𝛽𝑡𝑟𝑢𝑒|))and Standard deviation(S.D). 

our algorithm  runs 11000 iterations , with the first 1,000 iterations eliminated for burn-in. In 

this simulation examples, two simulation scenarios are implemented as following: 

First  Simulation Scenario 

The effectiveness of our proposed method (ENPCR) with  sparse model, was 

demonstrated in this simulation scenario. Sparse model is take the following formula: 

   𝑦𝑖 = 1𝑥1𝑖 + 1𝑥2𝑖 + 2𝑥5𝑖+1𝑥9𝑖 + 𝜀𝑖,           i=1,2,….200  

Nine independent variables was generated  from a multivariate normal distribution 

𝑋~𝑁9(0, Σ9) with mean zero (a vector of 0) and Covariance matrixΣ𝑝. 𝛽 =

(0,1,1,0,0,2,0,0,0,0) is the actual coefficient of the explanatory variables, which includes the 

intercept term. The results of  MMADs and standard deviations (SD) which listed in Table 1. 

It is readily noted that in all sample size and all correlation  levels under considerations. 

Therefore, our proposed method(ENPCR) have a good performance compared with other two 

methods (P.C.R)( B.L.P.C.R). This is evident from the values of (MMAD)(S.D) calculated 

using our proposed method, which is much smaller than the values of (MMAD)(S.D)  

calculated using the comparison methods (P.C.R)( B.L.P.C.R). 
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Table 1. The MMADs and standard deviations for first Simulation 

Methods Methods 𝜌1 = 0.55 𝜌2 = 0.85 𝜌3 = 0.95  𝜌4 = 0.99 

 

n=50 

P.C.R 0.871 (0.432) 0.767 (0.392) 0.881 (0.463) 0.743 (0.282) 

B.L.P.C.R 0.634 (0.303) 0.710 (0.383) 0.735 (0.376) 0.653 (0.330) 

ENPCR 0.492 (0.218) 0.561 (0.333) 0.619 (0.349) 0.510 (0.268) 

 

n=100 

P.C.R 0.963 (0.517) 0.869 (0.482) 0.934 (0.451) 0.887 (0.401) 

B.L.P.C.R 0.847 (0.491) 0.732 (0.369) 0.836 (0.428) 0.755 (0.384) 

ENPCR 0.561 (0.267) 0.495 (0.152) 0.632 (0.362) 0.492 (0.123) 

 

n=150 

P.C.R 1.124 (0.521) 1.294 (0.781) 1.452 (0.784) 1.307 (0.565) 

B.L.P.C.R 1.023 (0.511) 1.185 (0.652) 1.394 (0.463) 1.123 (0.562) 

ENPCR 0.841 (0.419) 0.944 (0.454) 0.854 (0.434) 0.723 (0.350) 

 

n=200 

 

P.C.R 1.318 (0.798) 1.429 (0.743) 1.521 (0.759) 1.451 (0.693) 

B.L.P.C.R 1.134 (0.674) 1.203 (0.564) 1.126 (0.657) 1.088 (0.519) 

ENPCR 0.864 (0.381) 0.741 (0.381) 0.863 (0.467) 0.736 (0.373) 

Note: In the parentheses are Standard deviation(S.D). 

The stability of the estimation algorithm is considered a very important aspect for 

assessing the superiority of the estimators according to the proposed method. In our ongoing 

research, we will rely on the plot of (trace plot) to illustrate the stability of the estimation  

algorithm as follows: 

 

Figure (1) show the trace plot of ENPCR in sparse  case and sample size is 50 

𝝆𝟒 = 𝟎. 𝟗𝟗 
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From the above figure, we see the our algorithm is very stationary via nine coefficients 

estimation. From this results, This result can be generalized to all estimators of the model 

(sparse) across all sample sizes and levels of correlation shown in the first simulation. 

Therefore, our algorithm is stable. 

Second simulation scenario 

The effectiveness of our proposed method (ENPCR) with  dense model, was 

demonstrated in this simulation scenario. dense model is take the following formula: 

   𝑦𝑖 = 0.85𝑥1𝑖 + 0.85𝑥2𝑖 + 0.85𝑥3𝑖+0.85𝑥4𝑖 + 0.85𝑥5𝑖 + 0.85𝑥6𝑖 +

0.85𝑥7𝑖+0.85𝑥8𝑖 + 0.85𝑥9𝑖 + 𝜀𝑖𝑖
,           i=1,2,….200  

Nine independent variables was generated  from a multivariate normal distribution 

𝑋~𝑁9(0, Σ9) with mean zero (a vector of 0) and Covariance matrixΣ𝑝. 𝛽 =

(0,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85) is the actual coefficient of the explanatory 

variables, which includes the intercept term. The results of  MMADs and standard deviations 

(SD) which listed in Table 2. It is  readily noted that in all sample size and all correlation  levels 

under considerations. Therefore, our proposed method(ENPCR) have a good performance 

compared with other two methods (P.C.R)( B.L.P.C.R). This is evident from the values of 

(MMAD)(S.D) calculated using our proposed method, which is much smaller than the values 

of (MMAD)(S.D)  calculated using the comparison methods (P.C.R)( B.L.P.C.R). 

Table 2. The MMADs and standard deviations for first Simulation 
Methods Methods 𝜌1 = 0.55 𝜌2 = 0.85 𝜌3 = 0.95 𝜌4 = 0.99 

 

n=50 

P.C.R 1.239 (0.672) 1.383 (0.720) 1.186 (0.673) 1.341 (0.730) 

B.L.P.C.R 0.945 (0.407) 0.859 (0.311) 0.734 (0.286) 0.973 (0.363) 

ENPCR 0.582 (0.197) 0.597 (0.210) 0.479 (0.238) 0.392 (0.107) 

 

n=100 

P.C.R 1.188 (0.653) 1.049 (0.536) 1.022 (0.428) 0.961 (0.505) 

B.L.P.C.R 0.962 (0.392) 0.863 (0.357) 0.793 (0.369) 0.688 (0.463) 

ENPCR 0.621 (0.358) 0.586 (0.422) 0.485 (0.174) 0.448 (0.281) 

 

n=150 

P.C.R 1.275 (0.664) 1.117 (0.577) 1.106 (0.469) 1.232 (0.682) 

B.L.P.C.R 0.942 (0.517) 0.876 (0.439) 0.851 (0.392) 0.829 (0.380) 

ENPCR 0.752 (0.363) 0.524 (0.266) 0.520 (0.305) 0.510 (0.275) 

 

n=200 

 

P.C.R 1.117 (0.943) 1.043 (0.676) 1.006 (0.345) 0.922 (0.362) 

B.L.P.C.R 1.057 (0.792) 1.067 (0.452) 1.018 (0.383) 1.043 (0.561) 

ENPCR 0.624 (0.286) 0.549 (0.302) 0.493 (0.124) 0.457 (0.231) 

Note: In the parentheses are Standard deviation(S.D). 
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The stability of the estimation algorithm is considered a very important aspect for 

assessing the superiority of the estimators according to the proposed method. In our ongoing 

research, we will rely on the plot of (trace plot) to illustrate the stability of the estimation  

algorithm as follows: 

 

 

Figure (2) show the trace plot of ENPCR in dense  case and sample size is 50 𝝆𝟒 =

𝟎. 𝟗𝟗 

 

 

From the above figure, we see the our algorithm is very stationary via nine coefficients 

estimation. From this results, This result can be generalized to all estimators of the model 

(sparse) across all sample sizes and levels of correlation shown in the first simulation. 

Therefore, our algorithm is stable. 
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3. RESULTS AND DISCUSSION 

Real Dataset  

After testing and demonstrating the good performance of our method compared to the 

comparison methods using simulation techniques, Additionally, the behavior of our proposed 

method will be studied using medical data obtained from the maternity hospital in Diwaniya, 

with a sample size of 220 observations. Our study contain one response variable is represented 

Weight of a Newborn Baby (𝑦𝑖),and nine independent variables are Gestation Duration (in 

days) (𝑥1), Number of Births(𝑥2), Is the mother diabetic? (𝑥3), Is the mother suffering from 

pregnancy-induced hypertension? (𝑥4), Mother's Age at Birth(𝑥5), Mother's Weight at 

Birth(𝑥6), Is the mother infected with COVID-19? (𝑥7), Is the mother a smoker? (𝑥8), Type of 

birth(𝑥9), After encoding the dependent variable and the independent variables, they were input 

into our proposed algorithm, where 11,000 iterations were executed, and the first 3,000 

iterations were discarded to achieve more stable estimates .To compare our proposed method 

with previous approaches, we will employ two criteria: Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE), as well as the standard division 

Table 3 show the values of RMSE, MAE and S.D for real data 
Methods RMSE MAE S.D 

P.C.R 3.452 1.858 0.782 

B.L.P.C.R 3.763 1.939 0.810 

ENPCR 1.483 1.217 582 

From the results presented in the table above, we notice that the  (RMSE) calculated 

using our proposed method is much smaller than the (RMSE) calculated using the other two 

methods. Therefore, our proposed method demonstrates good performance in estimating 

parameters and selecting variables, even in the presence of Multicollinearity issues. We also 

observe the same result when using the criteria (MAE) and (S.D). After demonstrating that our 

proposed method has superiority, it will be used to analyze this medical data as follows: 

Table 4 Show point  estimation and interval estimation of parameters to real data 
independent 

Variables 

Name  Variables Point 

estimation 

Interval estimation 

lower Upper 

𝑋1 Gestation Duration (in days) 2.189 1.083 3.305 

𝑋2 Number of Births 0.000 -0.002 0.002 

𝑋3 Is the mother diabetic 0.016 0.000 0.023 

𝑋4 Is the mother suffering from pregnancy-

induced hypertension? 

0.263 0.156 0.372 

𝑋5 Mother's Age at Birth 2.281 1.413 2.843 

𝑋6 Mother's Weight at Birth 0.000 -0.008 0.001 

𝑋7 Is the mother infected with COVID-19? 0.035 -0.120 0.191 

𝑋8 Is the mother a smoker? 0.000 -0.012 0.016 

𝑋9 Type of birth 0.006 0.013 0.030 
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After estimating the coefficients of the model, we find that there are 3 independent 

variables that are not significant in building our model and can be excluded from its 

composition. However, on the other hand, there are 6 important variables that have different 

effects on the response variable (Weight of a Newborn Baby). 

 

4. CONCLUSIONS AND RECOMMENDATION  

Conclusions 

We conclude that our proposed method demonstrates a good and superior performance 

in reducing high-dimensional data by combining two techniques used for this purpose. By 

mixing Principal Component Regression with Elastic Net, we achieve a robust and effective 

approach for handling high-dimensional datasets. Moreover, the proposed method is effective 

in addressing the issue of Multicollinearity, as well as the problem of an increasing number of 

independent variables relative to the sample size. Also, By concentrating on principal 

components that capture the greatest variance, the combination of PCA with Elastic Net 

improves the interpretability of the model and facilitates understanding of the relationships 

between the variables. Finally, Elastic Net Principal Component Regression (PCR) combines 

the strengths of Principal Component Analysis (PCA) and Elastic Net regularization, resulting 

in a robust model that effectively handles Multicollinearity and high-dimensional data.  

Recommendation  

We recommended by employing our prosed method (Elastic Net Principal Component 

Regression) is a potent and efficient method that strikes a compromise between simplicity, 

interpretability, and performance while analyzing high-dimensional datasets. When working 

with datasets where there are more predictors than observations, we recommended  use Elastic 

Net PCR since it is a good way to control Multicollinearity and minimize overfitting. 

Expanding our current study to include other regularization methods with strong properties and 

combining them with Principal Component Regression can lead to robust models capable of 

addressing Multicollinearity and high-dimensional data simultaneously and efficiently. 
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